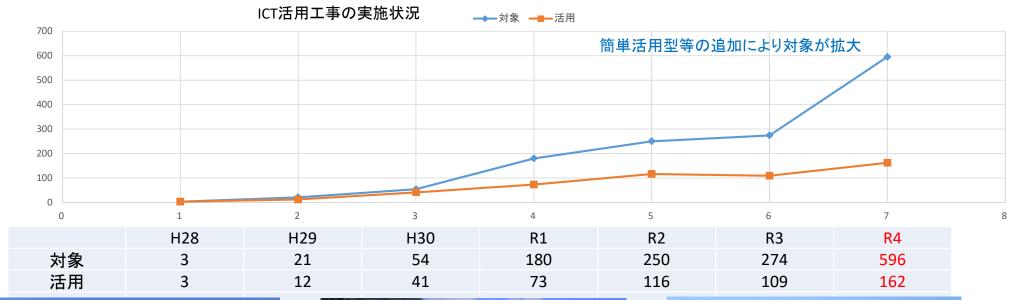


茨城県土木部発注工事におけるICT活用等の取組について

~働き方改革支援とデジタル技術(ICT他)の活用による生産性向上~


「もっとはじめの一歩体験会」

茨城県土木部検査指導課(DX促進チーム) 令和6年6月

ICT活用工事の取組実績件数について(H28~R4)

茨城県

■河川工事の掘削(R4d)

■道路工事の盛土(R4d)

■取付道路工事の法面工(R4d)

ICT活用促進工事の実施要領の改定内容等について

茨城県

- ▶ R5年4月から、発注者指定型又はチャレンジいばらき I 型を7,000m3以上から5,000m3以上に適用拡大[ICT土工]
- ▶ 土工・作業土工(床掘り)を含む工事は全てICT土工の対象として発注(対象±量の下限値(1千m3以上)をR4.4撤廃)[ICT土工]
- ▶対象工種にICT法面工とICT構造物工を追加。

OICT土工(床掘工含む)

掘削又は盛土量	発注方式					
5,000m3以上 7,000m3以上	発注者指定型又はチャレンジいばらき [型					
3,000m3以上 5,000m3未満 7,000m3未決	受注者希望型					
3,000m3未満	チャレンジいばらきⅡ型又は簡単活用型					

※土工を含むすべての工事が対象

OICT舗装

O.O. HIII AC					
下層路盤又は上層路盤	発注方式				
10,000m2以上	発注者指定型				
3,000m2以上10,000m2未満	受注者希望型				

OICT舗装工(修繕工)

予定価格1,000万円以上で「切削オーバーレイ工」を実施する工事の中から、 発注者が対象を選定のうえ「受注者希望型」で発注。

OICT付帯構造物設置工

ICT土工及びICT舗装工の関連工種として実施する。ただし、チャレンジいばらき 簡単活用型の場合は、付帯構造物設置工単独での実施も可能とする。

OICT法面工

対象工種(植生工、吹付工、吹付法枠工)を実施する工事の中から、 発注者が対象を選定のうえ「受注者希望型」で発注。

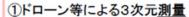
OICT構造物工

対象工種(橋台工、RC橋脚工)を実施する工事は、すべて「受注者希望型」で発注。

(注1)発注時点でICT工事の対象としなかった場合でも、契約後、受注者からの申し入れにより受発注者協議し、ICT活用促進工事とすることも可としている(その場合、受注者希望型に準ずる)。

(注2)「路面切削工」の場合でも、契約後、受注者からの申し入れにより、切削計画の作成にICT活用することも可(ICT舗装工(修繕工))

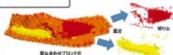
複数の工種の対象に なる場合もあります。


技術的基準は、国交省と全く同じものを適用

(1)チャレンジいばらき I 型

茨城県

【狙い】地元測量・コンサルと工事受注者との協業促進

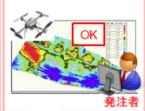


ドローン等による写真測量等により、短時間で面的(高密度)な3次元測量を実施。

②3次元測量データによる 設計・施工計画

3次元測量データ (現況地形)と設計図 面との差分から、施 工量(切り土、盛り土 量)を自動算出。

③ICT建設機械による 施工


3次元設計データ等により、 ICT建設機械を自動制御し、 建設現場のIoT^(※)を実施。

※IoT (Internet of Things)とは、様々なモノにセンサーなどが付され、ネットワークにつながる状態のこと。

4検査の省力化

ドローン等による3次元測量を活用した検査等により、出来形の書類が不要となり、検査項目が半減。

3次元起工測量

設計照査のための工事測量

3次元設計データ作成

設計照查, 電子丁張

ICT建設機械 による施工 3次元出来形管理 等の施工管理

3次元データの 納品

仮想的な元下関係のもと, ICT施工

地元測量・建設コンサルタント

※業務委託として分離発注

工事受注者

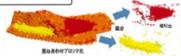
※発注者指定

地元の測量・建設コンサルタント業者を優良なアウトソーシング先として育成し、工事受注者との協業関係による生産性向上を促す。

(2)チャレンジいばらき II 型

茨城県

【狙い】地元建設業者による3次元データ内製化

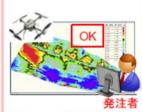


ドローン等による写真測量等によ り、短時間で面的(高密度)な3次 元測量を実施。

②3次元測量データによる 設計·施工計画

3次元測量データ (現況地形)と設計図 面との差分から、施 工量(切り土、盛り土 量)を自動算出。

③ICT建設機械による 施工


3次元設計データ等により、 ICT建設機械を自動制御し、 建設現場のIoT^(※)を実施。

※IoT (Internet of Things)とは、様々なモノにセ ンサーなどが付され、ネットワークにつながる

4検査の省力化

ドローン等による3次元測 量を活用した検査等によ り、出来形の書類が不要と なり、検査項目が半減。

3次元起工測量

設計照査のための工事測量

3次元設計データ作成

設計照查

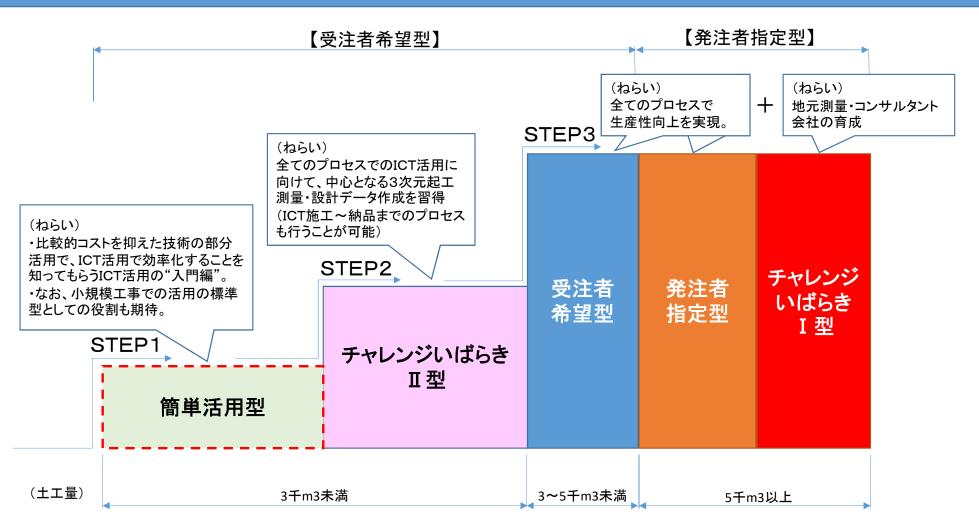
ICT建設機械 による施工

3次元出来形管理 等の施工管理

3次元データの 納品

工事受注者による内製を義務化

※受注者希望


従来型施工で可 (ICT施工も選択可)

工事受注者が自ら取組み、3次元データの本質を理解する ことが、ICT活用による生産性向上への近道

さらなる普及を目指して(令和4年4月からのチャレンジ) (3)チャレンジいばらき"簡単活用型"の概要

※全てのプロセス:①3次元起工測量、②3次元設計データ作成、③ICT施工、④出来形管理、⑤納品

チャレンジいばらき簡単活用型 活用イメージ

【ICT施工】

【必須】②3次元設計データ作成 (簡易でも可)

準備工 (測量に任意活用) 【選択必須】 ③ICT施工

- ・内製化を必須とするが、全ての2次元図面の 3次元化は不要。
- (活用する部分のみの作成でよく、Excelで作成したものやICT建機上で作成する簡易的なデータでも良い)

OExcelを用いた作成イメージ

(従来の測量)

測量点を予め計算し、複数の人 員と日数をかけて実施

→ (座標・3次元設計データを活用すると...)

- ・座標又は3次元設計データをTSに 導入しておくことで事前の計算が不要!
- ・3次元計測(X、Y、Z)により、位置と高さが 一度に測量でき日数が削減!
- ・さらに自動追尾のTSを活用すると1人で測量 が可能に!(人員削減)

ICT活用のプロセス外(履行確認は行わないが、活用して効率化することができる)

・建機に後付け式のマシンガイダンスバックホウ等 を床掘部分に活用 など

(ガイダンス画面イメージ) 33.2% =0'000.0' 0.0.0% 0.169m

測位方法 (測量器)

・オペレータが手元で掘削深さを確認しながら作業できるため検測が不要に!(日数・人員削減)・安全性が向上

※部分活用で良いが、最低でも対象工種の直線部は活用を必須とする。

施工機械 (小型マシンガイタンス機) ナビゲーション

積算基準に基づき設計変更対象

☆簡単活用型のポイント

- ・Ⅱ型で必須としている3次元起工測量(内製化)は実施しない。⇒ドローンやレーザースキャナの導入が不要
- ・3次元設計データ作成は簡易なもので可能とする。⇒3次元CADソフトの導入が不要・作成の手間の省力化
- ・なお、簡易的な活用ではあるが、成績評定等において評価の対象とする。

気軽にICTの活用 効果を実感してもらう (はじめの一歩)

チャレンジいばらき簡単活用型 活用イメージ

【出来形管理】

【必須】②3次元設計データ作成 (簡易でも可)

- ・内製化を必須とするが、全ての2次元図面の 3次元化は不要。
- (活用する部分のみの作成でよく、Excelで作成したものやICT建機上で作成する簡易的なデータでも良い)

設計変更対象外

準備工(測量・丁 張に任意活用) 通常施工(検測作 業等に任意活用) 【選択必須】 ④出来形管理

(従来の測量)

測量点を予め計算し、複数の人 員と日数をかけて実施

➡ (座標・3次元設計データを活用すると...)

- ・座標又は3次元設計データをTSに 導入しておくことで事前の計算が不要!
- ・3次元計測(X,Y,Z)により、位置と高さが一度 に測量でき日数が削減!
- ・さらに自動追尾のTSを活用すると1人で測量が可能に!(人員削減)

ICT活用のプロセス外(履行確認は行わないが、活用して効率化することができる)

- •トータルステーションによる断面管理を基本とする。
- ・付帯構造物(側溝など)の高さ管理のみの

活用など

※部分活用で良いが、最低、 対象工種の直線部は活用 を必須とする。

3次元で現場を管理することで出来形測定を効率的

また、自動追尾型のTSの活用であれば1人で出来型確認できさらに効率的に!

設計変更対象外

☆簡単活用型のポイント

- ・Ⅱ型で必須としている3次元起工測量(内製化)は実施しない。⇒ドローンやレーザースキャナの導入が不要
- ・3次元設計データ作成は簡易なもので可能とする。⇒3次元CADソフトの導入が不要・作成の手間の省力化
- ・なお、簡易的な活用ではあるが、**成績評定等において評価の対象とする**。

気軽にICTの活用 効果を実感してもらう (はじめの一歩)

取組みの評価

総合評価

▶ICT活用促進工事(土工)、ICT活用促進工事(舗装工)を"<u>受注者希望</u>型"で発注

する場合は、総合評価方式で評価

- (注)発注者指定型、チャレンジいばらきⅠ型・Ⅱ型、簡単活用型の場合は、総合評価の対象外
- (注)ICT舗装工(修繕工)については、受注者希望型であっても総合評価の対象外

成績評定

- ▶ICT活用工事を実施した場合、創意工夫において最大3点加点
 - チャレンジいばらき簡単活用型 1点
 - ・チャレンジいばらき簡単活用型以外のICT活用工事 2点
 - ・施工以外の全てのプロセスを内製した場合 3点 (工事成績評定の加点は、得点割合0.4を乗じた点数)

積算計上

▶国の積算基準等に準じ、次ページのとおり積算計上

取組みの評価

積算計上

(Q X D) —									
プロセス	(1)3次元起工 測量	(2)3次元設計 データ作成	(3)ICT建設機械による施工		(4)3次元出来形管 理等の施工管理	(5)3次元設計 データの納品			
積算計上	見積書を参考に計上 (共通仮設費) ※I型で業務委託する場合は, 標準歩掛(県独自)あり		ICT用の標準積算基準で計上 (直接工事、共通仮設費) ※ICT舗装工(修繕工)の場合は、 国の積算要領に準じて積算		共通仮設費率:×1.2 現場管理費率:×1.1				
(簡単活用型)	†応となるので, 針から見積を参考に計上 !) ない。(2)は簡易であるため設	直接工事費	【施工パッケーシ"】 土工(ICT) 法面整形工(ICT) 路盤工(ICT) 等	対象:ICT舗装工(修繕工)は対象外 条件:UAV又はレーザースキャ ナーを用いた3次元測量に より(4)及び(5)を実施した場 合適用(施工履歴データ活 用の場合は対象外) ※簡単活用型:設計変更対象外					
		共通仮設費	・保守点検・システム初期費	(出来型管理を実施する場合するため設計変更対象外)	会も断面管理を基本と				