2.5 温度検層結果

2.5.1 検層の概要

温度検層は、ボーリング No.5 孔内に温度センサーを設置したケーブルを挿入した状態で、ボーリング孔底にポンプで温水を投入し、時間と共に、温度が低下する状況を、深度毎に連続的に測定するものである。温度センサーは 50cm ピッチの多点温度検層で、深度 40m を測定できるよう、40 チャンネルの測定器を 2 台で実施した。

測定概念図を以下に示す。

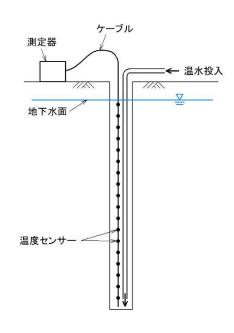


図 2.5.1 温度検層概念図

地下水の流動箇所の判定は、温度の時間的な変化が大きい区間を読み取ることで実施する。地下水流動速度が相対的に速い区間では、温度復元が速いため、図 2.5.3 に示す、グラフが左側に突出した状況を示す。

温度復元率は、下式で定義される。

$$t_r = \frac{\theta_d - \theta_t}{\theta_d - \theta_n} \times 100$$

ここに、 t_r :温度復元率(%)

 θ_{d} :温水投入直後の温度(\mathbb{C})

θ_n:自然状態の温度(℃)

 θ_{t} :経過時間tにおける温度(℃)

2.5.2 検層結果

検層結果を、温度-深度曲線、及び温度復元率-深度曲線として以下に示す。

2 つの曲線から、温度-深度曲線の 1 分後の 38m 付近、温度復元率-深度曲線の 1~3 分後の 38m 付近に、左に突出した形状が見られ、この付近で地下水の流動が認められる。

また深度 35m 付近から上部 20m 付近にかけて、連続的に温度復元率の減少が見られることから、深度 $35\sim40m$ 付近からの孔内での上昇流が推定される。

下図に示すように、ボアホールカメラ画像では、38.4m 付近の層理面に沿って粘土を挟んだ状況が確認でき、この層理面に沿って、地下水が流動していることが推定される。また深度 35~40m 間を掘進後、1.3L/min の湧水が確認されたことからも、地下水の流動が推定されることと整合する。

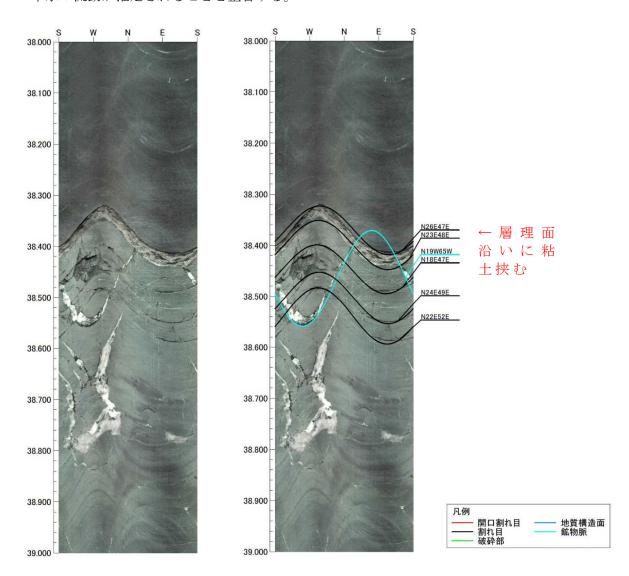


図 2.5.2 ボアホールカメラ画像 (深度 38~39m) (右は割れ目等のトレースと走向傾斜を加筆)

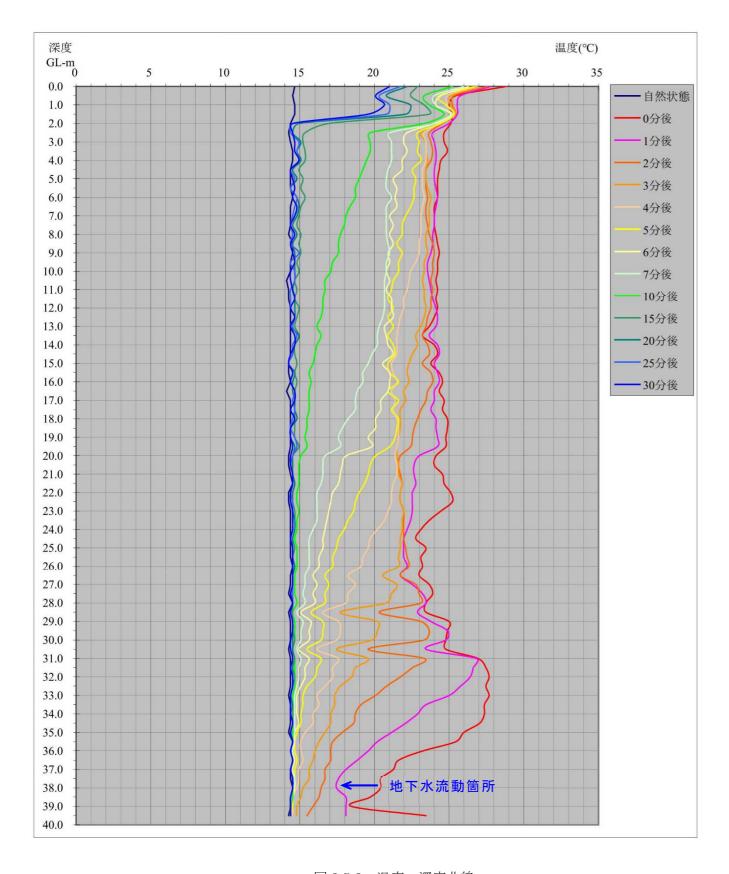


図 2.5.3 温度-深度曲線

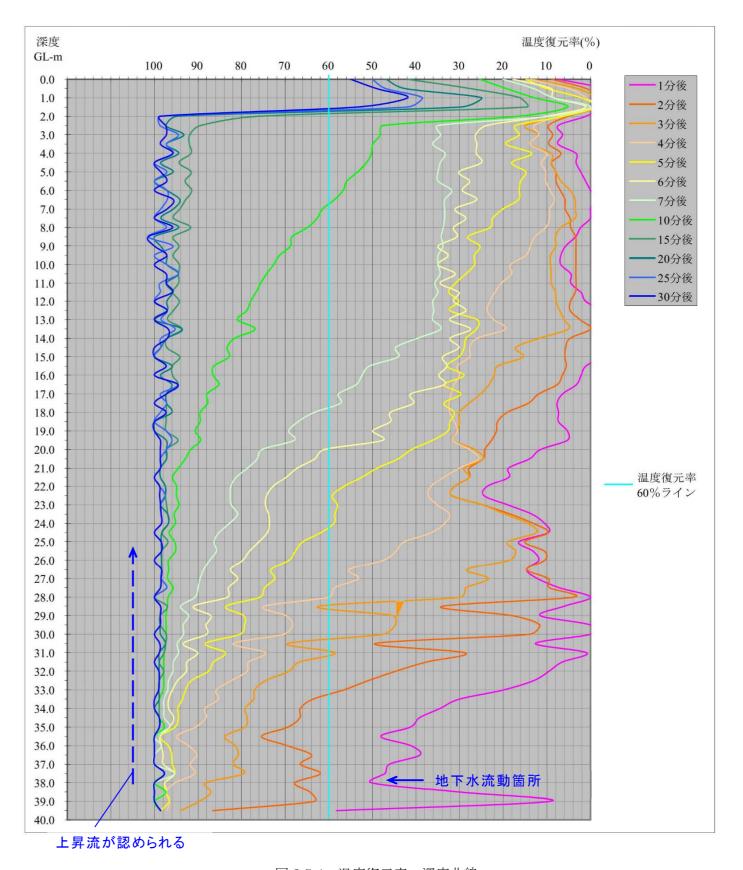


図 2.5.4 温度復元率-深度曲線

2.5.3 追加地質調査結果まとめ

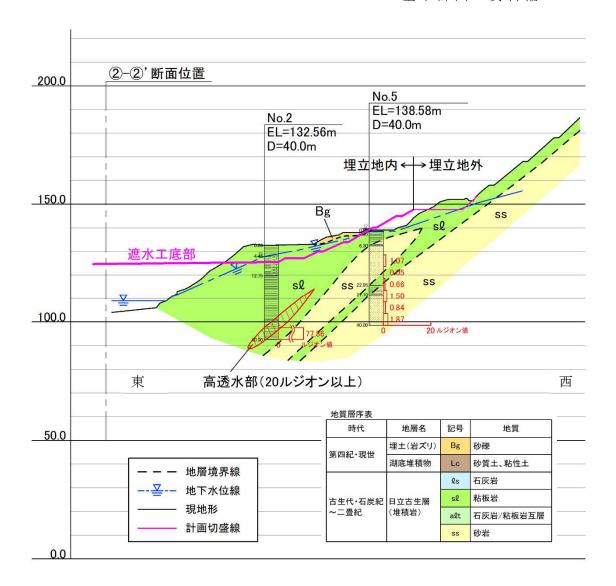
【ボーリング調査結果に関して】

- 計画地西側の粘板岩分布域は、追加ボーリング結果から、砂岩と粘板岩を主体 とする地層からなり、地下深部では砂岩が多く分布することが判明した。
- ボアホールカメラ観察結果から、砂岩、粘板岩には、空洞は見られず、割れ目も少なく、良好な岩盤状況である。
- No.5 の孔底 35~40m 区間では 1.3L/min の湧水が見られ、被圧水頭は概ね GL +1m を示す。この区間は、温度検層で 38m 付近に地下水の流れが想定されること、ボアホールカメラ画像とボーリングコアで、38.4m 付近に粘土を挟む層理面と、層理面に平行な割れ目が見られることから、これが湧水の経路になっていると考えられる。
- 湧水は西側の尾根部の水位が高いことから、尾根部の地下水が被圧水となって、ボーリング No.5 の深部から湧出するものと考えられる。

【No.2 の高透水部に関して】

- 砂岩、粘板岩の透水性は、今回実施した No.5 孔の 6 回のルジオンテスト結果 から、2 ルジオン以下の低透水を示すことが判明した。No.2 の 35~40m の高 透水部(77.86 ルジオン)は、以下の①~③の理由から、傾斜の急立した断層 ではなく、粘板岩の層理面沿いに破砕し軟質化した部分であり、透水性が高く なっていると考えられる。また高透水部の分布は、No.2 付近全体に広がって いるものではなく、局所的であり、地表部及び No.5 地点へ連続する可能性は 低いと考えられる。
- ① No.2 の 35~40m は、コア状況から傾斜の急立した亀裂が少ない。また 39~40m のコアは土砂状となっており、急傾斜の亀裂が少ないことから、傾斜約45°の層理面沿いに軟質化した部分と考えられる。(コア写真参照)

No.2 孔 35~40m コア写真


40

② ボーリング No. 2 周辺の露頭では、顕著な破砕を伴う断層は認められない。 (写真参照)

No.2 地点付近の露頭状況

③ ボーリング No.5 の上部 6.3m までの粘板岩層には、No.2 の 39~40m で見られた粘土層や破砕部が見られない。また No.5 の 6 回のルジオンテスト結果は、いずれも 2 ルジオン以下の低透水性を示す。これらのことから、No.2 の 35~40m の高透水部は、地層の層理面に沿って、No.5 地点の上部まで連続している可能性は低いと考えられる。(地質断面図参照)

No.2、No.5 地点地質断面図

- 以上のことから、No.2 の高透水部は、地表には連続する可能性は低く、地下 深部に留まることから、地表からの透水経路にはならないと考えられる。
- No.2 付近では、地表付近を造成し遮水工を施すことから、高透水部からの影響はないものと考えられる

2.6 水文調査結果

2.6.1 水文観測、水質分析結果

(1)水位観測と湛水面の測量結果

ボーリング位置図を図 2.6.1 に示す。

既往ボーリング No.1~No.4 孔及び湛水面の水位測定結果を以下に示す。ボーリング No.1~No.4 では、いずれの地点においても、令和 3 年 9 月 15 日の水位は、令和 3 年 2 月 5 日の水位に比べ、0.25m~3.43m 高い結果となった。

また、湛水面の測量結果は、令和3年9月15日観測時よりも、令和3年10月18日観測時は、0.26m低い結果となった。

表 2.6.1 ボーリング孔の地下水位観測と湛水面の測量結果一覧

観測地点	孔口標高			水位 (TP)		R3.2とR3.9の 水位差(m)	R3.9とR3.10の 水位差(m)		
既 炽 地 杰	(TP(m))	R3. 2. 5	R3. 9. 15	R3. 10. 18	R3. 10. 27	R3. 11. 4	R3. 11. 5		R3. 10. 18— R3. 9. 15
No. 1	116. 53	107. 56	107. 81	107. 74	-	-	-	0. 25	-0. 07
No. 2	132. 56	127. 88	131.31	131. 2	-	-	_	3. 43	-0. 11
No. 3	130. 59	107. 93	109. 07	108.86	-	-	ı	1. 14	-0. 21
No. 4	175. 52	163. 09	165. 15	164. 44	-	-	ı	2. 06	-0. 71
No. 5	138. 58	-	-	-	139.45 (被圧)	139.59 (被圧)	139.60 (被圧)	_	_
湛水面の標高		-	110.71	110. 45		·		_	-0. 26

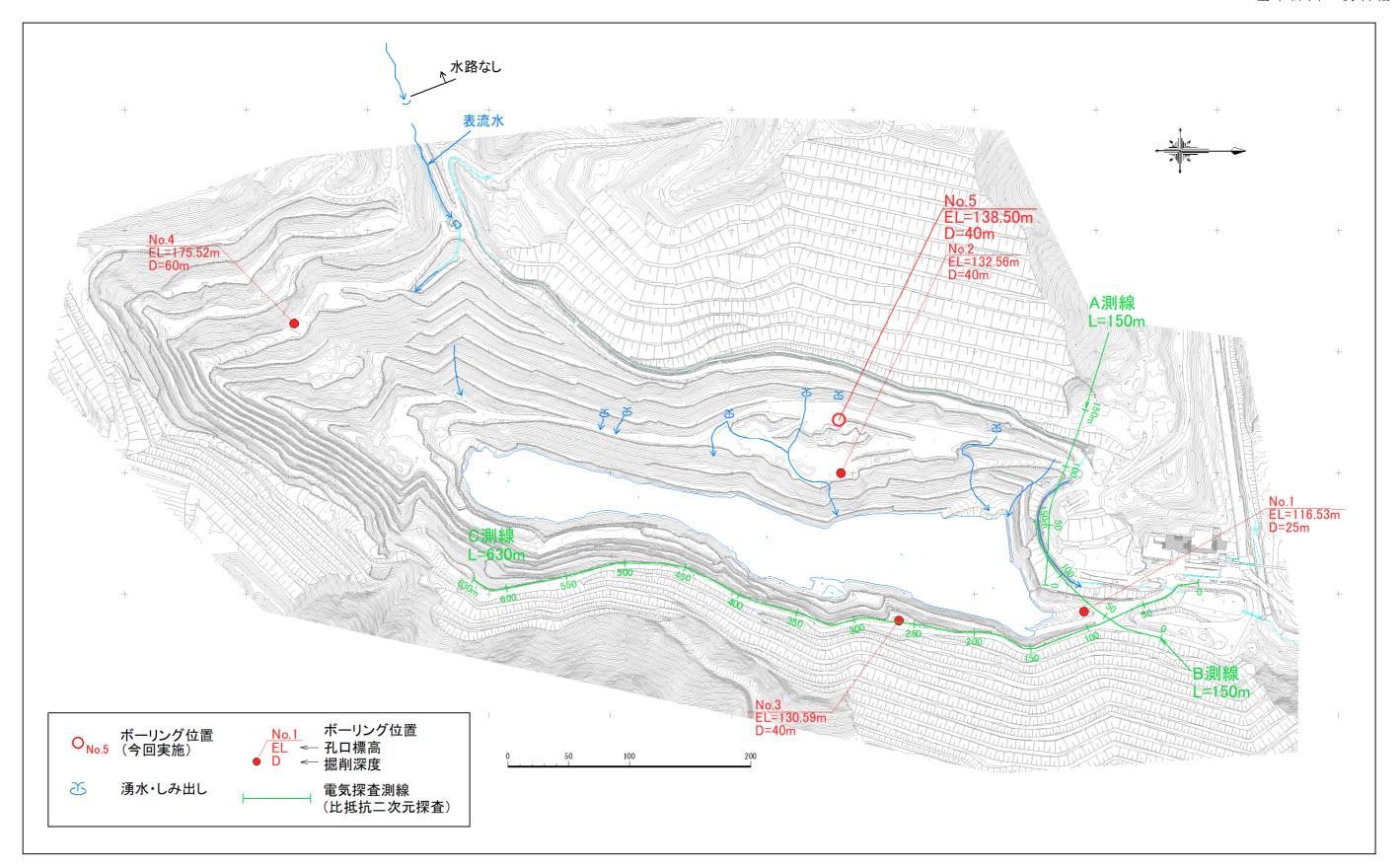


図 2.6.1 ボーリング位置図

(2)水質分析結果

水質分析試料の採水地点を、次ページに示す。また採水地点の一覧を、次表に示す。

表 2.6.2 採水地点一覧表

区分	番号	位置	備考
	1	場内最上流沢水	
場内	2	場内最下流暗渠排水	
2977	3-1	場内西側湧水	
	3-2	場内湛水	
	4	鮎川上流(場内排水合流部直上)	場内水との合流前の河川水
	5-1	諏訪の水穴地点河川水	場内水との合流後の河川水
	5-2	諏訪の水穴(空洞からの湧水と思われる)	
場外	5-3	諏訪の水穴下流河川水	場内水との合流後の河川水
	6	鮎川上流	場内水との合流前の河川水
	7	計画地東側流域沢水	
	8	鮎川下流	計画地の最下流の河川水

豊水期の水質分析として、9月15日に採水した試料の分析結果の一覧を、以下に示す。

表 2.6.3 分析結果一覧表

	地点項目	単位	地点1	地点2	地点3-1	地点3-2	地点4	地点5-1	地点5-2	地点5-3	地点6	地点7	地点8
	採水時水温	°C	17.6	23.2	23.0	23.0	16.8	17.5	16.3	17.0	17.5	17.6	18.5
	外観	-	淡緑色透	無色透明									
その	рН	1	7.8 (15°C)	8.6 (14°C)	8.3 (14°C)	8.4 (13°C)	8.2 (13°C)	8.1 (12°C)	7.9 (17°C)	8.2 (14°C)	8.0 (14°C)	7.8 (15°C)	8.1 (18°C)
他	EC	mS/m	15.6	16.1	38.2	31.1	21.7	26.5	28.4	26.7	24.7	33.4	26.4
	ナトリウムイオン	mg/L	7.7	7.1	6.5	4.9	7.3	7.1	6.9	7.0	7.4	13	7.5
	カリウムイオン	mg/L	0.8	0.9	3.8	2.2	1.2	1.4	1.5	1.4	1.1	1.3	1.3
1	カルシウムイオン	mg/L	12	13	55	41	23	33	38	34	29	39	34
オン分	マグネシウムイオン	mg/L	3.9	3.6	4.2	3.6	4.0	4.4	4.8	4.0	4.3	3.8	4.6
析	塩化物イオン	mg/L	6.8	6.7	5.7	4.5	7.2	6.6	6.7	7.0	6.9	13	8.1
	炭酸水素イオン	mg/L	52	52	110	80	74	85	97	92	65	79	81
	硫酸イオン	mg/L	10	11	72	56	15	25	28	26	35 	52	30

(採水日:令和3年9月15日)

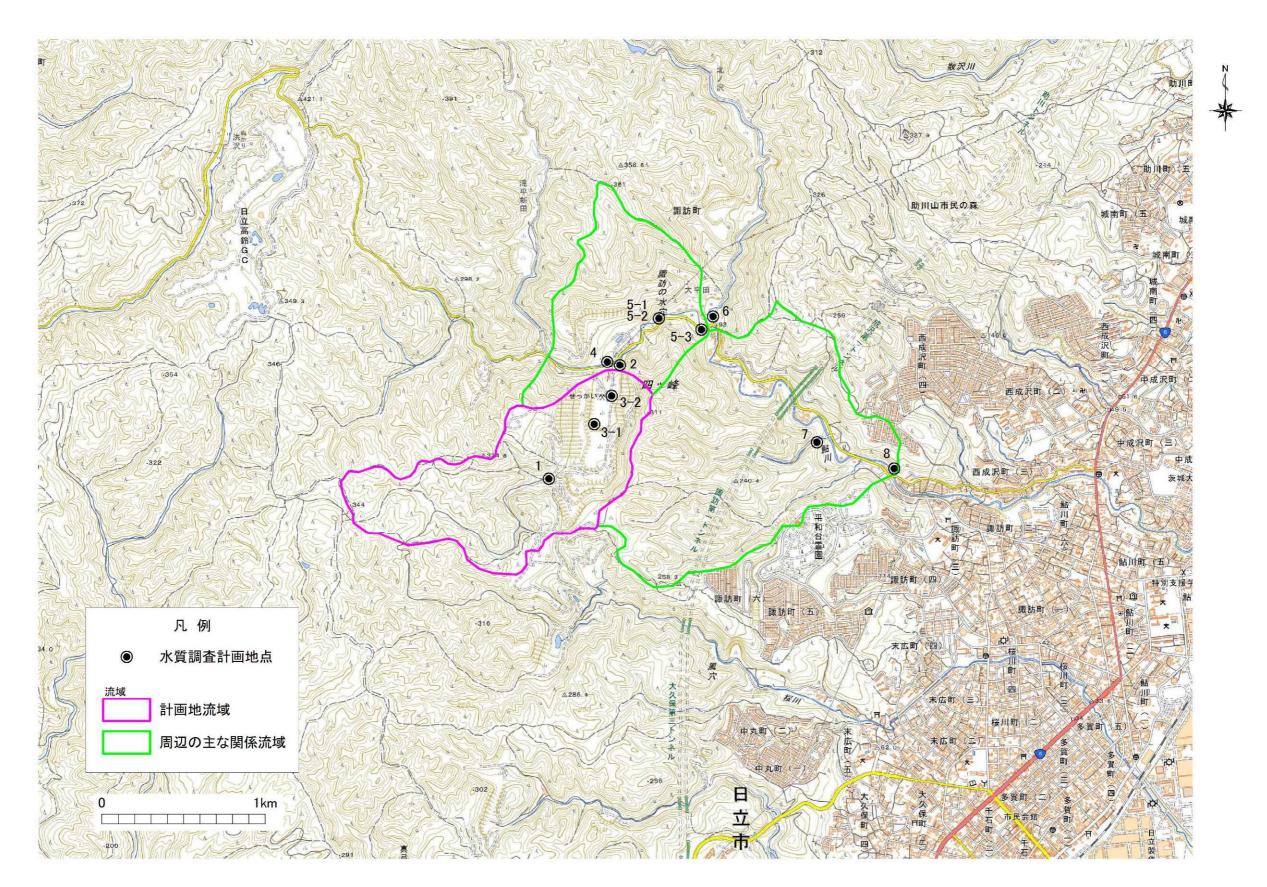


図 2.6.2 採水地点位置図 国土地理院(電子国土 Web)より引用・加筆

2.6.2 水質分析結果の考察

水質分析結果を、pH、電気伝導率、イオンパターン別に図 2.6.3~図 2.6.5 に示した

(1) pH

pH はいずれの採水地点とも、 $pH7.8\sim8.6$ であり、弱い塩基性を示す結果となった(図 2.6.3)。下流側暗渠排水の地点 2 では、pH8.6 とやや高い値を示した。本地点は、場内上流側の地点 1 から流下した水が流出する地点と想定されるが、コンクリートの排水路を通る過程で pH が高くなった可能性が考えられる。

(2) 電気伝導率

電気伝導率は、分析結果より 15.6~38.2mS/m を示す(図 2.6.4)。

場内西側湧水 (3-1) 及び場内湛水 (3-2) と沢水 (7) の一部に $31.1\sim38.2$ mS/m とやや高い値を示す箇所が認められる。場内最上流沢水 (1) と場内最下流暗渠排水 (2)は $15.6\sim16.1$ mS/m と低い値を示す。

(3) イオンパターン

イオン分析結果をもとに、ヘキサダイアグラムを作成した。ヘキサダイアグラムの 一般的パターンと特徴を表 2.6.4 に示す。

へキサダイアグラムで見ると、いずれも①の CaーHCO3 タイプ、もしくは⑤の中間領域タイプに属し、カルシウムイオンと炭酸水素イオンが卓越する。

イオンパターン、電気伝導率をもとに、各地点の水質をパターン分けしたものを表 2.6.5 に示す。イオン濃度、電気伝導率が相対的に低い A と、イオン濃度、電気伝導率が相対的に高く、カルシウムイオン及び硫酸イオンに富む B、両者の中間的な C の、3 つのパターンに区分される。

図 2.5.5 にヘキサダイアグラムの平面的分布を示した。

イオンパターンと電気伝導率の分布から、石灰岩の分布が相対的に乏しい上流側の 支川等の水質(1、2、4、6、8)は、他の地点に比べてイオン濃度が相対的に低い。

場内の湛水 3-2 は、場内西側の湧水 3-1 に代表されるイオン濃度の高い水と、相対的に濃度の低い場内の河川水、湧水、雨水が混合して、希釈されたものと考えられる。

掘削地よりも下流側の鮎川の河川水 8 は、支川の河川水等に希釈され、5-1、5-3 地点よりも、相対的にイオン濃度が低いと考えられる。

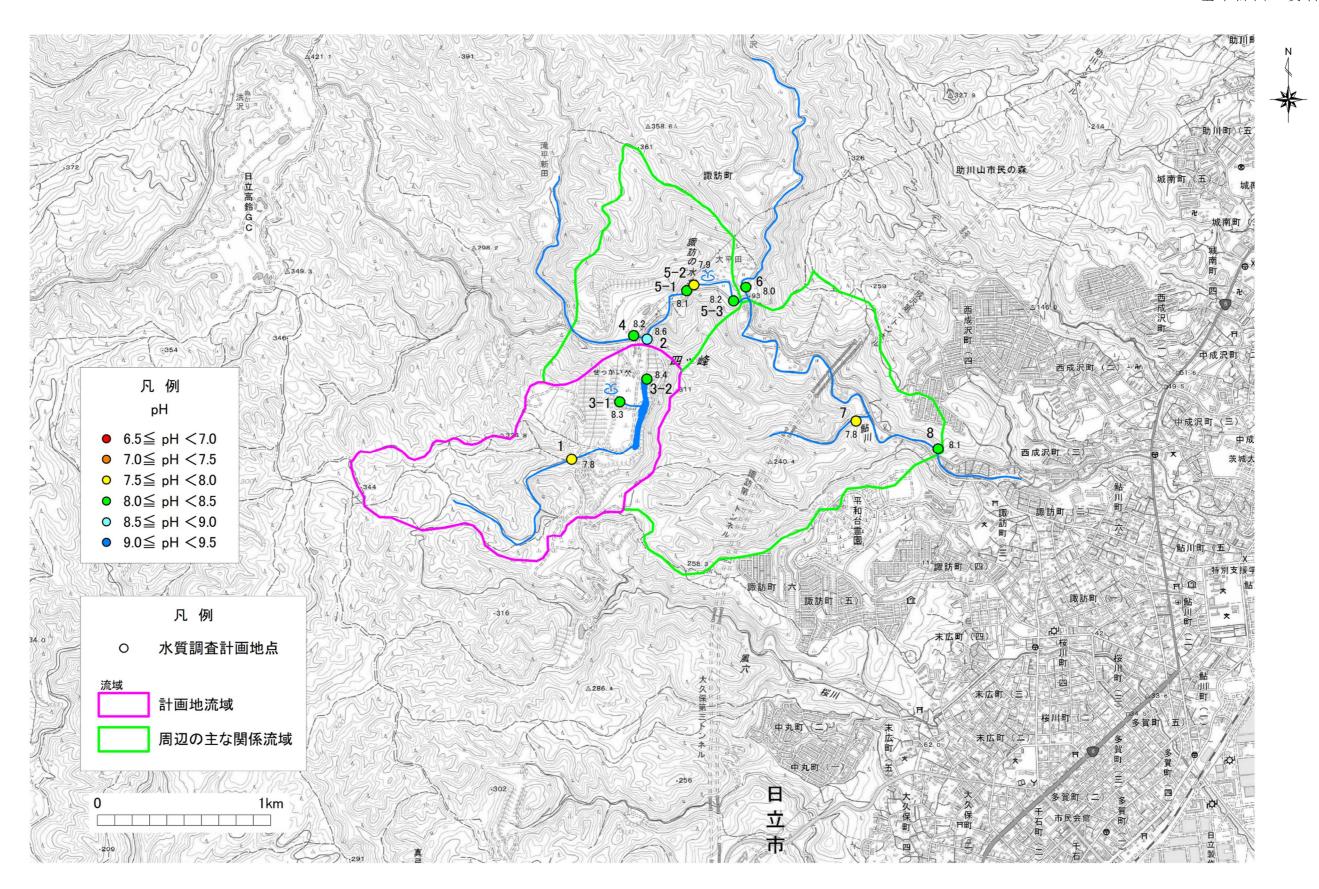


図 2.6.3 水質分析結果図 (pH) 採水日: 令和 3 年 9 月 15 日 国土地理院 (電子国土 Web) より引用・加筆

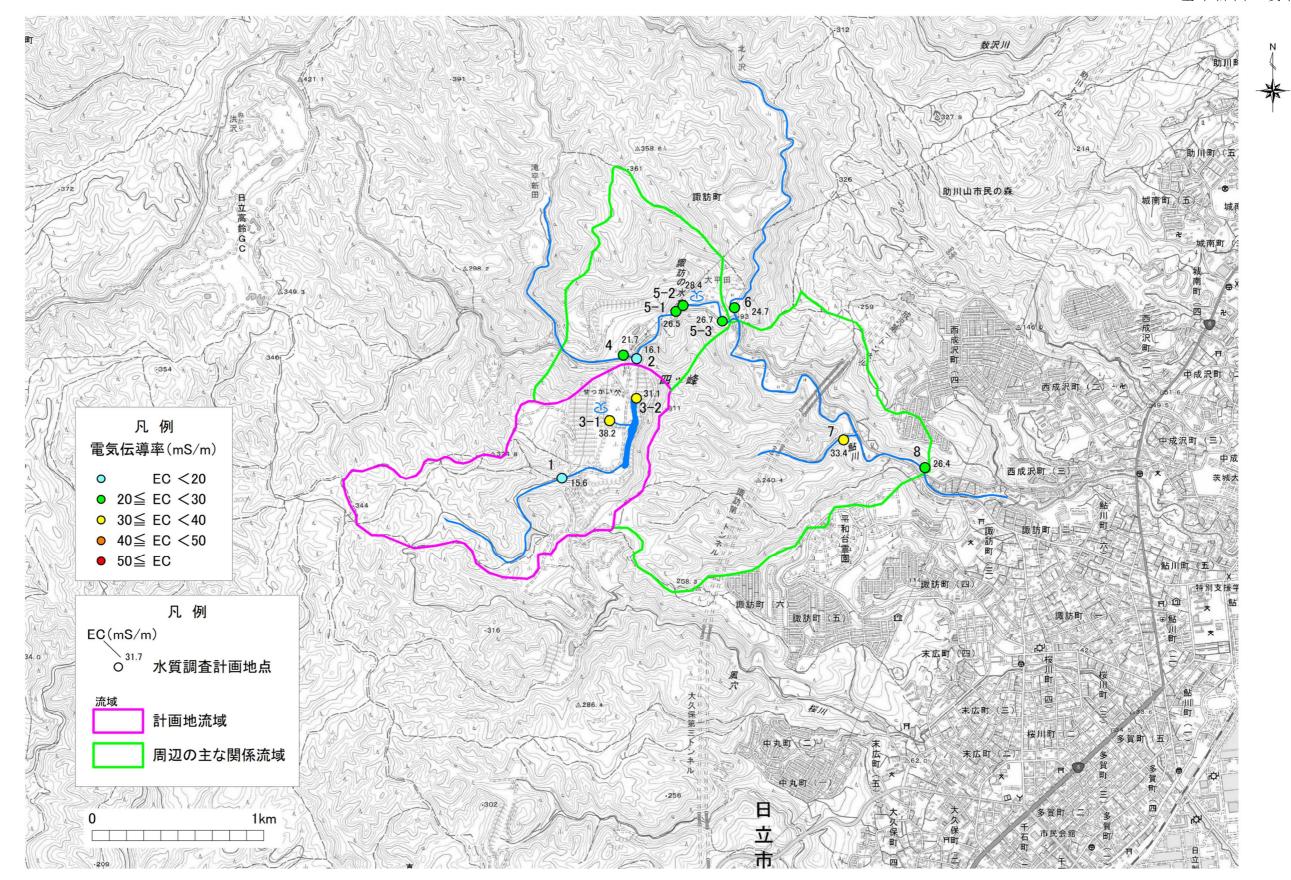


図 2.6.4 水質分析結果図(電気伝導率)採水日:令和3年9月15日 国土地理院(電子国土 Web)より引用・加筆

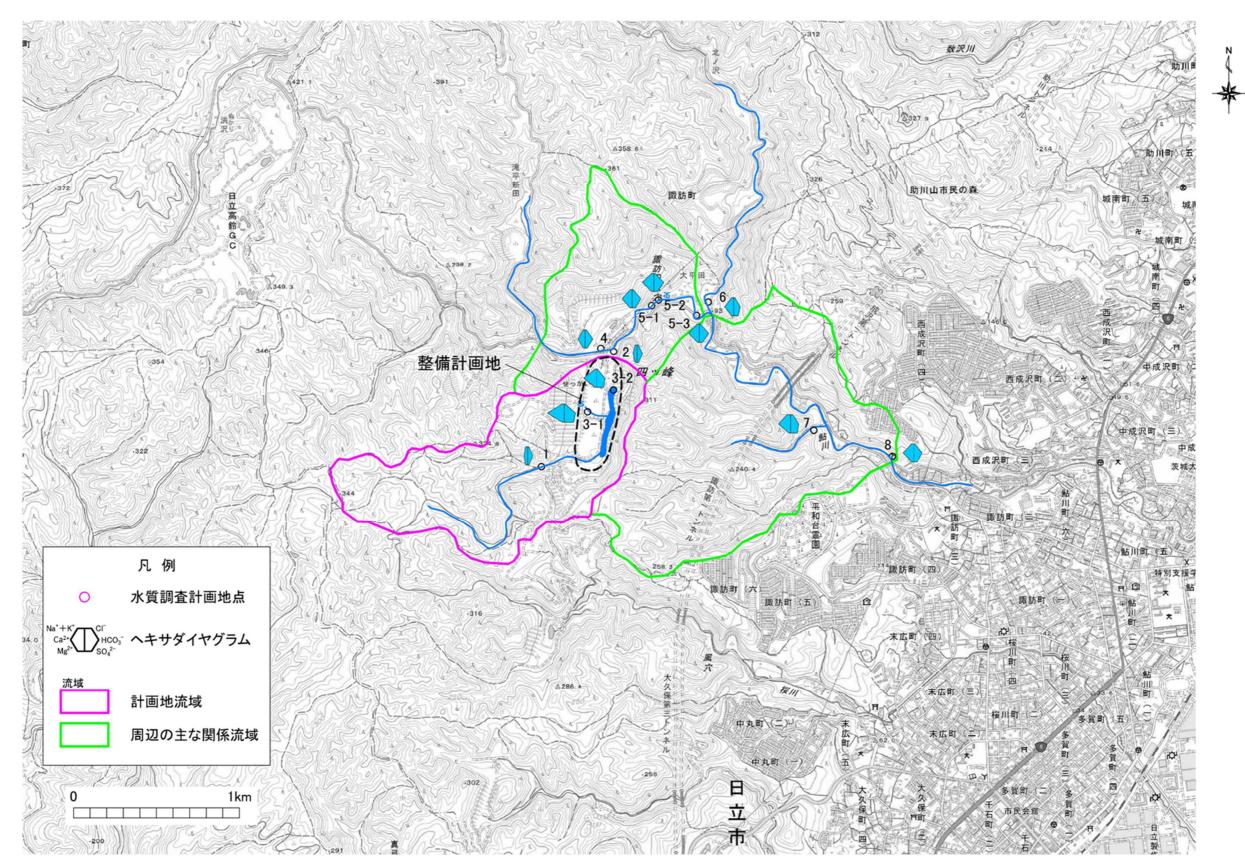


図 2.6.5 水質分析結果図 (ヘキサダイアグラム) 採水日: 令和3年9月15日 国土地理院 (電子国土 Web) より引用・加筆

パターン 特徴 Ca-HCO3タイプ ①Ca-HCO3 タイプ (重炭酸カルシ Na+K-ウム型) - → · HCO3 日本の循環型地下水の一般的パター - - · SO4 + NO3 ン。石灰岩地帯で典型的。 Ca-Clタイプ ②Ca-SO4 または③Ca-Cl タイプ Na+K (非重炭酸カルシウム型) · HCO3 温泉水、鉱泉水、化石塩水等が該当し、 - · SO4 + NO3 一般の地下水では特殊。温泉水や排水 Ca-SO4タイプ Na+K --- -— — · cı 等の人為的な混入が考えられる。 - · HCO3 ③Na-Cl または Na-SO4 タイプ Na-Clタイプ Na+K -(非重炭酸ナトリウム型) · HCO3 海水が混入した地下水、温泉水等が示 - · SO4 + NO3 すタイプ。 ④Na-HCO3 タイプ (重炭酸ナトリ Na-HCO3タイプ Na+K -ウム型) 停滞的な環境にある地下水が該当す - · SO4 + NO3 る。地表から比較的深い位置にある地 ⑤中間領域タイプ 中間領域タイプ 各タイプの中間的なパターンで、河川 Na+K -水、伏流水、循環性地下水の多くがこ · HCO3 のパターンを示す。該当するケースは · SO4 + NO3 多く、ダイヤモンド型に近いものか ら、どれか2タイプの混合に近いも のなどがある。

表 2.6.4 ヘキサダイアグラムのパターン<参考>

表 2.6.5 各地点のイオンパターンの特徴

区分	パターン名	地点番号	イオンパターン図	電気伝導率※ (mS/m)	特徴	由来
А	中間領域 パターン	1,2,4, 6,8	地点1 地点2 地点4 Na*+K* Cl Na*+K* Cl Na*+K* Cl HCO ₃ Ca ^{2*} HCO ₃ Ca ^{2*} HCO ₃ Ca ^{2*} HCO ₃ Mg ^{2*} SO ₄ ² Mg ^{2*} SO ₄ ² HCO ₃ Mg ^{2*} SO ₄ ² HCO ₃ Mg ^{2*} SO ₄ ² HCO ₃ Ca ^{2*}	15.6~26.4 (21.5~29.6)	溶存イオン濃度が低い。	場内上下流と鮎 川と支川上流沢 水、及び鮎川の 下流。石灰岩の 影響が少ない。
В	重 炭 酸 ナトリウム型 パターン	3-1	#b.di3-1 OC: Ca ^{2*} HCO ₃ * Mg ^{2*} SO ₄ ²⁻	38.2 (51.2)	CaとSO4が多 く、全体に溶存 イオン濃度が高 い。	基盤の岩石(石 灰岩、粘板岩)の 影響を受け、溶 存イオンが多い。
С	A と B の 中間パターン	3-2、5- 1、5-2、 5-3、7	地点5-2 Na*+K* CI* Ca ²⁺ HCO ₃ * Ca ²⁺ 地点5-3 Na*+K* CI* Ca ²⁺ HCO ₃ * Mg ²⁻ SO ₄ ²⁻ HCO ₃ * Mg ²⁻ SO ₄ ²⁻ HCO ₃ * Mg ²⁻ SO ₄ ²⁻ HCO ₃ * Ca ²⁺ HCO ₃ * Mg ²⁻ SO ₄ ²⁻ HCO ₃ * Mg ²⁻ SO ₄ * Mg ²⁻	26.5~33.4 (30.7~38.6)	上記AとBの中 間的、混合パ ターン	湛水3-2は場内 上流沢水3-1(B) と他の湧水や雨 水が混合したも の。諏訪の水穴 の湧水5-2は、3- 1の湧水よりも溶 存イオンは少な い。

令和3年9月15日採水 ※下段()は令和3年2月5日採水試料の値

(4) 渇水期との比較

令和3年2月採水時との水質分析結果の比較を以下に示す。ヘキサダイアグラムより、殆どの地点で令和3年2月採水時より溶存イオン濃度が小さい結果となった。また、掘削地内の湧水(3-1)もカルシウムイオン及び硫酸イオン濃度をはじめ、溶存イオン濃度が全体に小さくなっている。これは、令和3年9月観測時が豊水期にあたり、地下水が希釈されたためと考えられる。

表 2.6.6 各地点のイオンパターンの特徴

	1 1
項目	変化の傾向
рН	大きな変化は認められない。
EC	全体に値は低下しており、R3.2 採水時の 72%~90%となって
	いる。地点 1 で R3.2 採水時の 72%と最も低下率が大きく、地
	点 6 で 90%と、やや低下率が小さかった。
イオンパターン	全体に溶存イオン濃度が小さくなっており、特にカルシウムイ
	オン及び硫酸イオンの減少が認められる。(地点 3-1 など)

表 2.6.7 水質分析結果 (採水日:上段 R3.2.5 、下段 R3.9.15)

	地点項目	単位	1	3-1	3-2	4	5-1	5-2	5-3	6	7	8
	採水時水温	ွ	3.4	8.9	5.2	5.0	9.8	9.2	8.8	4.0	8.2	8.0
	pH(分析時水温)	-	8.0(13°C)	8.2(12°C)	8.1(12°C)	8.2(12°C)	8.2(14°C)	7.9(12°C)	8.2(12°C)	8.1(12°C)	7.9(13°C)	8.3(13°C)
の他	EC	mS/m	21.5	51.2	36.1	25.3	38.6	30.7	31.7	27.3	38.2	29.6
	ナトリウムイオン	mg/L	7.7	7.8	6.1	7.9	7.8	7.3	7.7	7.8	14	7.8
	カリウムイオン	mg/L	1.1	4.0	2.4	1.2	1.4	1.3	1.3	0.9	1.0	1.0
1	カルシウムイオン	mg/L	22	77	49	29	52	38	41	33	46	38
オン分	マグネシウムイオン	mg/L	4.4	5.6	3.8	4.1	4.7	4.0	4.3	3.8	4.0	4.0
4-	塩化物イオン	mg/L	7.4	6.7	5.6	7.2	6.4	6.9	7.0	6.8	14	7.9
	炭酸水素イオン	mg/L	73	130	81	85	120	100	110	80	82	95
	硫酸イオン	mg/L	13	120	71	18	50	31	32	35	70	33

電気伝導率 (≒溶存イオン 濃度)が減少 (R3.2 採水時 の 72~90%)

					_								
	地点項目	単位	地点1	地点2	地点3-1	地点3-2	地点4	地点5-1	地点5-2	地点5-3	地点6	地点7	地点8
	採水時水温	ů	17.6	23.2	23.0	2/3.0	16.8	17.5	16.3	17.0	17.5	17.6	18.5
	外観	1	淡緑色透	無色透明									
その	рН	-	7.8 (15°C)	8.6 (14°C)	8.3 (14°C)	8.4 (13°C)	8.2 (13°C)	8.1 (12°C)	7.9 (17°C)	8.2 (14°C)	8.0 (14°C)	7.8 (15°C)	8.1 (18°C)
他	EC	mS/m	15.6	16.1	38.2	31.1	21.7	26.5	28.4	26.7	24.7	33.4	26.4
	ナトリウムイオン	mg/L	7.7	7.1	6.5	4.9	7.3	7.1	6.9	7.0	7.4	13	7.5
	カリウムイオン	mg/L	0.8	0.9	3.8	2.2	1.2	1.4	1.5	1.4	1.1	1.3	1.3
1	カルシウムイオン	mg/L	12	13	55	41	23	33	38	34	29	39	34
オン分析	マグネシウムイオン	mg/L	3.9	3.6	4.2	3.6	4.0	4.4	4.8	4.0	4.3	3.8	4.6
析	塩化物イオン	mg/L	6.8	6.7	5.7	4.5	7.2	6.6	6.7	7.0	6.9	13	8.1
	炭酸水素イオン	mg/L	52	52	110	80	74	85	97	92	65	79	81
	硫酸イオン	mg/L	10	11	72	56	15	25	28	26	35	52	30

新たに追加した箇所

表 2.6.8 ヘキサダイアグラムの比較

単位:meq/l

			単位:meq/ℓ
地点名	R3.2.5 採水	R3.9.15 採水	備考
地点 1 (場内最上流 沢水)	Na*+K* CI- Ca2* HCO ₃ - Mg ^{2*} SO ₄ ²	Na*+K* C HCO ₃ * HCO ₃ * SO ₄ *2 -5 0 5	溶存イオン濃度が低くなっている。豊水期にあたり、溶存イオン濃度の高い地下水の混入割合が小さいためと考えられる。
地点 2 (場内最下流 暗渠排水)	(採水できず)	18,52 Na*+K* CI* Ca2+ HCO3* Mg2* SO42*	
地点 3-1 (場内西側湧 水)	Na*+K* 3-1 CI HCO ₃ - HCO ₃ - O SO ₄ - O SO	18点3-1 Na*+K* CI* Ca2* HCO3* Mg2* SO4*2	カルシウムイオン 及び硫酸イオン濃 度が低下してい る。
地点 3-2 (場内湛水)	Na*+K* CI- Ca ² + HCO ₃ - Mg ² * SO ₄ ² -	Na*+K* CI HCO3 HCO3 TO 5	カルシウムイオン及び硫酸イオン濃度がやや低下している。
地点 4 (鮎川上流 (場内排水合 流部直上)	Na*+K* 4 Cl- Ca ²⁺ HCO ₃ - Mg ²⁺ SO ₄ ²	#他点4 Na*+K* Cl* Ca2+ HCO₃* Mg²* SO₄²-	カルシウムイオン及び炭酸水素イオン濃度がやや 低下している。
地点 5-1 (諏訪の水穴 地点河川水)	Na*+K* C - Ca ² * HCO ₃ - -5 0 5	#他供5-1 Na*+K* CIT Ca ²⁺ HOO ₃ * -5 0 5	溶存イオン濃度が低くなっている。豊水期にあたり、溶存イオン濃度の高い地下水の混入割合が小さいためと考えられる。
地点 5-2 (諏 訪 の 水 穴)	Na*+K ⁵⁻² Cl ⁻ HCO ₃ - Mg ²⁺ SO ₄ ²⁻ -5 0 5	#8.病5-2 Na*+K* CIT Ca ²² HCO ₃ * Mg ²⁴ SO ₄ ²⁻	特に変化なし

基本計画 資料編

地点名	R3.2.5 採水	R3.9.15 採水	備考
地点 5-3 (諏訪の水穴 下流河川水)	Na*+K' Cl HCO ₃ - HCO ₃ - 5 0 5	18€5-3 Na*+K* CI* Ca²+ HCO₃* Mg²+ SO₃²-	カルシウムイオン及 び炭酸水素イオン濃 度がやや低下してい る。
地点 6	Na*+K* 6 Cl HCO ₃ HCO ₃ SO ₄ 2- 5 0 5	Na*+K* Cir Ca²⁵ HCO₃* Mg²² SO₄²*	カルシウムイオン及 び炭酸水素イオン濃 度がやや低下してい る。
地点 7 (計画地東側 流域沢水)	Na*+K' 7 CI- Ca ²⁺ HCO ₃ - Mg ²⁺ SO ₄ ²⁻	Na*+K* 1也点7 Cl ThO 3 Th	カルシウムイオン及 び硫酸イオン濃度が やや低下している。
地点 8	Na*+K* 8 CI HCO ₃ - SO ₄ 2- O 5	Ns*+K* Cir Cir HCO3 - 5 0 5	カルシウムイオン及 び炭酸水素イオン濃 度がやや低下してい る。

2.6.3 追加水文観測、水質分析結果まとめ

【水文調査結果に関して】

- 計画地周辺の湧水や一部の沢水は、日本の河川水の一般的な水質に比べて、カルシウムイオン、炭酸水素イオン、一部硫酸イオンに富む。カルシウムや、炭酸水素イオンが多い水質は、石灰岩地帯で典型的な日本の地下水の一般的な水質である。また岩盤からの湧水は溶存イオン濃度が相対的に高く、石灰岩分布地点から離れた沢水は、溶存イオン濃度が相対的に低い傾向が見られた。
- 計画地周辺の湧水や沢水・河川水の水質から、地下水や河川水の大まかな流れ は次の通り推察される。計画地は、採石により地表に露出した岩盤の一部か ら、カルシウムや硫酸イオンを多く含み、溶存イオン濃度の高い地下水(3-1)が湧出しており、沢水や雨水で希釈された水が凹地に湛水している。掘削 地内の湧水(3-1)を除き、概ね日本の河川水に一般的なイオンパターンを示 す。湛水地下流側には、掘削地内の湧水等溶存イオン濃度の相対的に高い水が 沢や河川に流出し、希釈されながら流下しているものと考えられる。計画地周 辺で特異な水質を示す箇所は認められない。
- R3.2 採水時と水質を比較した結果、R3.9 採水時はカルシウムイオン及び硫酸イオン濃度をはじめ、溶存イオン濃度が全体に低くなっている。これは、R3.9 採水時が豊水期にあたり、地下水が希釈されたためと考えられる。

【地下水位観測結果に関して】

既往ボーリング No.1~No.4 孔の水位標高は、渇水期の2月に比べて豊水期の9月では、0.25~3.43mの上昇が見られた。湛水面の標高は、9月15日から10月18日の間に、26cmの低下が認められた。